

Non-Invasive Prenatal Screening (NIPS) in the detection of microdeletions

Pe'er Dar, MD

Professor, Obstetrics and Gynecology and Women's Health Director, Division of Fetal Medicine and OBGYN Ultrasound Albert Einstein College of Medicine Montefiore Medical Center, Bronx, NY USA

Disclosures

Institutional research support for the SMART study: Natera Inc, San Carlos, CA (ended 2021)

Prenatal genetic screening: A (very) brief review

Prenatal Genetic Screening

	1960's	1984	1988	1996	1998- 2006	2011
	Maternal Age	MS-AFP	Triple Screen	Quad Screen	FTS: NT+serum	NIPS with cfDNA
Detection rate	27%	36%	60-74%	70-81%	80-95%	99%
Gestational age	N/A	15 wks+	15 wks+	15 wks+	10-11wks+	9+
Screened abnormality	T21	T21, T13, T18 +				
False positive T21	25%	NA	5%	5%	5%	0.1%
PPV for T21					3%	95%

Screening performance

- False-positive: what is the chance that someone has a wrong high-risk screening results in the entire cohort?
- <u>Sensitivity</u>: How many of the affected patients will be detected?
- Positive predictive value (PPV): From those that received positive results, what is the chance of it being a true positive?

NIPS (Non-Invasive Prenatal Screening)

- Increasingly used as a primary method to screen pregnancies for the common whole-chromosome fetal aneuploidies due to high sensitivity and extremely low false positive (FP) rate
- NIPS uses "fetal" cfDNA in maternal serum that primarily arises from apoptosis of placental trophoblasts

Prenatal Genetic Screening

	1960's	1984	1988	1996	1998- 2006	2011
	Maternal Age	MS-AFP	Triple Screen	Quad Screen	FTS: NT+serum	NIPS with cfDNA
Detection rate	27%	36%	60-74%	70-81%	85-90%	99%
Gestational age	N/A	15 wks+	15 wks+	15 wks+	10-11wks+	9+
Screened abnormality	T21	T21, T13, T18 +				
Screen positive					534/10,000	42/10,000
False positive T21	25%	NA	5%	5%	500/10,000	2/10,000
True positives					40/10,000	40/10,000
True negatives					6/10,000	<1/10,000
PPV for T21					3%	95%

Microdeletion syndromes

What is a Microdeletion (or duplication)?

- Chromosomal deletions that are too small to be detected by light microscopy using conventional cytogenetic methods
- Karyotype can usually only visually detect <a>7-10 MB

13.2

13.31 13.32

• Size ranges 100kb to several MB. The larger the deletion, more genes are included. "p" Arm TBX1 11.2 COMT 11.1 Centromere ZNF74 11.1 CRKL Microdeletion UBE2L3 11.2 MAPK1 12.1 IGLC1 12.2 12.3 GNAZ 13.1

Outcome will depend on the size & the genes involved

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

DECEMBER 6, 2012

VOL. 367 NO. 23

Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

Ronald J. Wapner, M.D., Christa Lese Martin, Ph.D., Brynn Levy, M.Sc.(Med.), Ph.D., Blake C. Ballif, Ph.D., Christine M. Eng, M.D., Julia M. Zachary, Melissa Savage, M.S., Lawrence D. Platt, M.D., Daniel Saltzman, M.D., William A. Grobman, M.D., M.B.A., Susan Klugman, M.D., Thomas Scholl, Ph.D., Joe Leigh Simpson, M.D., Kimberly McCall, B.S., Vimla S. Aggarwal, M.B., B.S., Brian Bunke, B.S., Odelia Nahum, M.Sc., Ankita Patel, Ph.D., Allen N. Lamb, Ph.D., Elizabeth A. Thom, Ph.D., Arthur L. Beaudet, M.D., David H. Ledbetter, Ph.D., Lisa G. Shaffer, Ph.D., and Laird Jackson, M.D.

High Incidence Conditions

10

More Common Than Down Syndrome in Younger Women

¹Snijders, et al. Ultrasound Obstet Gynecol 1999;13:167–170. ²Combined prevalence using higher end of published ranges from Gross et al. Prenatal Diagnosis 2011; 39, 259-266; and www.genetests.org. Total prevalence may range from 1/1071 - 1/2206.

Common microdeletions

Microdeleti on Syndrome	Additional names	Common Genomic defect	Prevalen ce	Clinical manifestations
22q11.2 deletion syndrome	Di-George; Velo- Cardio- Facial	22q11.2 3Mb del	1:2,000	Cardiac and other anomalies, <i>intellectual disability</i> , immune deficiency, hypocalemia, schizophrenia
Prader- Willi syndrome		15q11.2 5Mb del , Maternal UPD	1:10,000	<i>intellectual disability</i> , short stature, genital hypoplasia, obesity, psychiatric disorders
Angelman syndrome		15q11.2-q13 4Mb del ; UBE3A mutation; Paternal UPD	1:12,000	Severe intellectual disability, seizures, problems with balance and walking.
1p36 deletion syndrome	1p36 monosom Y	1p36 del (1.5- > 10Mb)	1:5,000	<i>intellectual disability</i> , seizures, hearing loss, birth defects
Cri-Du - Chat syndrome	5p-	5p del (5 to 40 Mb)	1:20,000	Severe intellectual disability, cardiac anomalies, scoliosis and short stature

22q11.2 deletion syndrome

- 22q11.2DS (DiGeorge or Velo-Cardio-Facial syndrome) is the most common microdeletion in humans and a leading cause of congenital heart defects and neurodevelopmental delay
- > Affects approximately 1 : 3-6,000 live births

Clinical features of 22q11.2DS

Feature	prevalence
Typical facial features	100%
Congenital heart defects	65%
Palate abnormalities	70%
Gastrointestinal anomalies	30%
Renal anomalies	20%
Immunodeficiency	75%
Neonatal hypocalcemia	50%
Developmental delay	90%
Psychiatric disorders	60%

Image from: Lisa J Kobrynski, Kathleen E Sullivan. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes, The Lancet; 370,9596, 2007,1443-1452

22q11.2DS - early intervention matters

• Plan delivery of a fetus with cardiac anomaly at a center capable of caring for complex cardiac anomalies

• Monitor calcium levels after birth to prevent long term sequalae that is is associated with hypocalcemia

 Delay administering live vaccines due to thymus hypoplasia associated immunodeficiency

Chromosome 22

Prader-Willi Syndrome (PWS)

***** Affects 1:12,000-30,000 live births

Clinical features:

- Mild to moderate intellectual disability
- Delayed motor development
- Speech and behavioral problems
- Distinct facial features
- Food craving and obesity
- Hypogonadism
- Short stature

Genetics of PWS

- The 15q11.2-q13 region includes mostly maternally imprinted genes that are controlled by the imprinting center (IC).
- Two main genetic mechanisms cause PWS:
 - In 75%. the 15q11.2-q13 region from the fathers ch #15 is deleted
 - In 25% 2 maternal ch #15 are transferred to the child (Maternal Uniparental Disomy or UPD)
- Deletion of the maternal chromosome in the same region will result in a different syndrome Angelman syndrome

Prenatal screening for Microdeletion syndromes

Why screen for microdeletions? Current criteria for prenatal genetic screening

- Must have a significant clinical impact and/or proven immediate postnatal intervention
- The disease is prevalent
- Test performance is reasonable
- Cost is reasonable

Why screen for microdeletions?

- A common cause for intellectual disability and developmental delay
- Leading cause of genetic disorders in younger women and in aggregate are more prevalent than the common trisomies
- Can be easily missed in routine prenatal care or after birth
- Prenatal detection has the potential to improve shortand long-term infant and childhood outcomes in some syndromes

NIPS for microdeletions and duplications

- cfDNA screening introduced the potential to target any region of the genome i.e. the opportunity to extend routine screening beyond the detection of aneuploidies
- Introduced in 2014 and isoffered by several commercial companies
- Companies claim high detection rate and decent PPV but data is based on small validation studies or retrospective cohorts
- Concern: Data on actual disease prevalence and real-world test performance using genetic confirmation in a large cohort was lacking

Original Research

OBSTETRICS

Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome

Pe'er Dar, MD; Bo Jacobsson, MD, PhD; Rebecca Clifton, PhD; Melissa Egbert, MS; Fergal Malone, MD; Ronald J. Wapner, MD; Ashley S. Roman, MD; Asma Khalil, MD; Revital Faro, MD; Rajeevi Madankumar, MD; Lance Edwards, MD; Noel Strong, MD; Sina Haeri, MD; Robert Silver, MD; Nidhi Vohra, MD; Jon Hyett, MD; Zachary Demko, PhD; Kimberly Martin, MD; Matthew Rabinowitz, PhD; Karen Flood, MD; Ylva Carlsson, MD, PhD; Georgios Doulaveris, MD; Sean Daly, MD; Maria Hallingström, PhD; Cora MacPherson, PhD; Charlly Kao, PhD; Hakon Hakonarson, MD, PhD; Mary E. Norton, MD

Primary Objective of the SMART study

To assess the performance of SNP-based cfDNA

screening for 22q11.2DS in a large, prospective cohort,

using genetic confirmation in all pregnancies

ohort,

SMART Methods unique aspects

- Prospectively obtained DNA samples for genetic confirmation by Chromosomal Microarray from over 18,000 fetuses and newborns.
- Included very small deletions (>500Kb) in the analysis
- Data was re-analyzed with an updated cfDNA algorithm using for machine learning technologies to optimize the identification of of those very small deletions

SMART Results

Enrolled n=20,887

Final cohort for analysis (cfDNA results and genetic confirmation available) n=18,290 (87.5%)

12 confirmed 22q11.2 deletions

Incidence of small deletions in SMART much higher than expected

Prevalence 1:1524

22q11.2 deletion screening performance

Additional microdeletions (n=10,971)

- CMA confirmed 5 PWS cases (1:2,194), and one case of PWS/AS, and one Cri-Du-Chat case
- 6/7 microdeletion cases, were detected by cfDNA (sensitivity of 85.7%). The Cri-Du-Chat case was missed
- cfDNA was reported as high-risk in 14 cases (0.13%), 6 true and 8 false positives. The PPV for PWS was 62.5% (5/8).

able 1. Chara	cteristics of Dele	etions and Lo	oss-of-Heteroz	zygosity (Cases Identified by	Microarray		
Diagnosis	Size of Deletion or Region with LOH	GA at cfDNA (weeks)	NT (mm)	SGA	Prenatal Anomalies Detected	Postnatal Malformation and Short-term Outcome	Fetal or newborn Genetic Testing	cfDNA Screening Result
Confirmed	Syndrome by Mi	icroarray						
Cri-du-Chat	2Mb	10	1.6	No	No	No	No	Low-Risk
PWS	4.8Mb	18	1.5	Yes	No	Left club foot	No	High-Risk
PWS	LOH 13.7Mb	12	1.6	No	No	Micrognathia, hypotonia, respiratory failure	Newborn	High-Risk
PWS	4.8Mb	13	2.3	No	No	No	No	High-Risk
PWS	LOH 7.8Mb	13	1.7	No	No	No	No	High-Risk
PWS	LOH 11.9Mb	32	N/A	No	32 weeks Pierre Robin Sequence, CL/P, Heterotaxy	No	No	High-Risk
PWS/AS [£]	LOH 11.3Mb	11	1.9	No	No	No	No	High-Risk

Table 1. *LOH – Loss of heterozygosity within the critical region and including disease-associated genes was considered diagnostic and suggestive of uniparental disomy; £ CMA inconclusive without maternal sample available to differentiate between PWS and AS; GA- gestational age; NT-Nuchal translucency; CLIP – cleft lip and palate; SGA- small for gestational age

Summary of SMART study findings

- 22q11.2DS prevalence in our cohort was 1:1,524
- cfDNA screening detected 83% of 22q11 microdeletions that are
 >500kb with a false positive rate of <0.1% and PPV of 52.6%
- Using the updated algorithm, NIPS detected all PWS cases with a low false-positive rate but screening performance for the other microdeletions could not be determined

The New York Times

TheUpshot

When They Warn of Rare Disorders, These Prenatal Tests Are Usually Wrong

Some of the tests look for missing snippets of chromosomes. For every 15 times they correctly find a problem \bigcirc ...

DA U.S. FOOD & DRUG

Genetic Non-Invasive Prenatal Screening Tests May Have False Results: FDA Safety Communication

... they are 🔍 wrong 85 times

The New York Times

	Chance positive results are wrong
DiGeorge syndrome Affects 1 in 4,000 births Can cause heart defects and delayed language acquisition. (May appear on lab reports as "22q.")	81% wrong
1p36 deletion 1 in 5,000 births Can cause seizures, low muscle tone and intellectual disability.	84% wrong
Cri-du-chat syndrome 1 in 15,000 births Can cause difficulty walking and delayed speech development.	80% wrong
Wolf-Hirschhorn syndrome 1 in 20,000 births Can cause seizures, growth delays and intellectual disability.	86% wrong

Prader-Willi and Angelman syndromes

1 in 20,000 births Can cause seizures and an inability to control food consumption.

93% wrong

TABLE 4

Estimated positive predictive value and negative predictive value

Disorder	Incidence (1:n)	Frequency of deletion evaluated	Positive predictive value, ^a %	Negative predictive value, ^b %
22q11.2 del	2000	0.87	5.3	>99.99
Prader- Willi	10,000	0.28	4.6	>99.99
Angelman	12,000	0.28	3.8	>99.99
1p36 del	5000	0.60	17.0	>99.99
Cri-du- chat	20,000	0.65	5.3	>99.99

^a Calculated by multiplying population incidence, the frequency of the deletion evaluated, and the positive likelihood ratio (detection rate/false-positive rate); ^b Calculated by multiplying population incidence, the frequency of the deletion evaluated, and the negative likelihood ratio ([1-detection rate]/[1-false-positive rate]).

Wapner. Noninvasive screening for fetal microdeletion syndromes. Am J Obstet Gynecol 2015.

How to interpret NIPS results

• While low-risk results are expected in most cases and are reassuring, false-negative results, although rare, can still occur.

• NIPS is a screening test and not a diagnostic test and false positives are possible and even common for microdeletions.

• High-risk results should be confirmed with diagnostic testing and decisions should not be made solely on NIPS results.

Screening for microdeletions is complicated

- The rarer the deletion, it is more difficult to assess test performance. A lower PPV is expected.
- Deletions can be of different sizes or in different locations within the syndrome-related region.
- Some deletions may not include the syndrome critical region or genes
- The clinical implication of very small deletions is less clear
- Syndromes that are associated with imprinted genes require further testing

Should we challenge the current paradigm of prenatal genetic testing?

- The current prenatal screening model follows a paradigm that is based on the prenatal screening model for T21, i.e. disease must be prevalent
- New technologies, such as whole-exome sequencing, allow screening of the entire genome including for rare single-gene disorders
- If the real question asked by parents is: "Is my child healthy?" Should the paradigm change from adding disorders, approved by professional societies in a salami method to an all-inclusive assessment of the fetal genome with parents' autonomy to make their own decisions?

Conclusions

- Screening for microdeletion syndromes is clinically reasonable as they are associated with severe sequelae
- Detection of microdeletions by cfDNA is complicated, but we have now data that at least for 22q11.2DS it is accurate with clinically reasonable PPV
- Before expanding NIPS to additional microdeletions or to all-inclusive screening, professional societies should reassess the goals of modern prenatal genetic screening.
- NIPS has false negatives and false positives and patients need to be aware that it is a screening and not a diagnostic test

SMART investigators

Bo Jacobson M.D., Ph.D., Rebecca Clifton Ph.D., Melissa Egbert M.S., Fergal Malone M.D. Ronald J Wapner M.D., Ashley S Roman M.D., Asma Khalil M.D., Revital Faro M.D., Rajeevi Madankumar M.D., Lance Edwards M.D., Noel Strong M.D., Sina Haeri M.D., Robert Silver M.D., Nidhi Vohra M.D., Jon Hyett M.D., Ph.D., Kimberly Martin M.D., Cora McPherson Ph.D., Charlly Kao Ph.D., **Mary E. Norton M.D.**

SNP-based Microdeletion and Aneuploidy Registry Trial

Questions?

High-Risk 22q11 Results Example

Result	Fetal S	ex	Fetal Fraction
HIGH RISK for 22q11.2 dele syndrome	etion Male		8.3%
\triangle	đ		pt .
This is a screening test only. Genetic cou findings.	unseling and diagnostic tes	ting with a microarray should b	e offered to further evaluate these
The Panorama risk score reflects ana	alysis of DNA from the p	lacenta. The placental DNA n	nay not accurately reflect the state
of the fetus; therefore, no irreversib	le decisions should be m	ade based upon results of th	is screening test alone.
of the fetus; therefore, no irreversib RESULTS DETAILS	le decisions should be m	ade based upon results of th	is screening test alone.
of the fetus; therefore, no irreversib RESULTS DETAILS Condition tested ¹	le decisions should be m Result	ade based upon results of th Risk Before Test ²	is screening test alone. Panorama Risk Score ³
of the fetus; therefore, no irreversib RESULTS DETAILS Condition tested ¹ Trisomy 21	le decisions should be m <i>Result</i> Low Risk	ade based upon results of th Risk Before Test ² 1/152	is screening test alone. Panorama Risk Score ³ <1/10,000
of the fetus; therefore, no irreversib RESULTS DETAILS Condition tested ¹ Trisomy 21 Trisomy 18	le decisions should be m <i>Result</i> Low Risk Low Risk	Risk Before Test ² 1/152 1/111	Panorama Risk Score ³ <1/10,000 <1/10,000
of the fetus; therefore, no irreversib RESULTS DETAILS Condition tested ¹ Trisomy 21 Trisomy 18 Trisomy 13	le decisions should be m <i>Result</i> Low Risk Low Risk Low Risk	Risk Before Test ² 1/152 1/111 1/357	Panorama Risk Score ³ <1/10,000 <1/10,000 <1/10,000
of the fetus; therefore, no irreversib RESULTS DETAILS Condition tested ¹ Trisomy 21 Trisomy 18 Trisomy 13 Monosomy X	le decisions should be m <i>Result</i> Low Risk Low Risk Low Risk Low Risk	Risk Before Test ² 1/152 1/111 1/357 1/256	Panorama Risk Score ³ <1/10,000 <1/10,000 <1/10,000 <1/10,000
of the fetus; therefore, no irreversib RESULTS DETAILS <i>Condition tested</i> ¹ Trisomy 21 Trisomy 18 Trisomy 13 Monosomy X Triploidy/Vanishing twin	le decisions should be m Result Low Risk Low Risk Low Risk Low Risk Low Risk	Risk Before Test ² 1/152 1/111 1/357 1/256	Panorama Risk Score ³ <1/10,000 <1/10,000 <1/10,000 <1/10,000

1. Excludes cases with evidence of fetal and/or placental mosaicism. 2. Based on maternal age, gestational age, and/or general population, as applicable. References available upon request. 3. Based on a priori risk and