Labor Management for Patients with Obesity

Wendy L. Whittle MD PhD FRCSC
Head: Division of Maternal Fetal Medicine
Co-Head: Division of Midwifery
Medical Director: Antenatal Inpatient Care, Ambulatory Obstetrics
Sinai Health System; Toronto CA

Management of Spontaneous Labor, Augmentation and Induction of Labor

- Rationale for IOL: why, timing, predicting success & counselling
- Review the unique characteristics of labor & the biophysiology of labor
- Pragmatic & evidence based approach to labor management
 - Cervical ripening
 - Timing for AROM
 - Use of oxytocin: dose, duration
 - Role for FSE & IUPC
 - Monitoring progress
 - Setting expectations: patient & OB provider
 - TOLAC

Definition of Obesity:
BMI > 30
Class I: 30-34.5
Class II: 35-39.5
Class III: > 40
Rationale for Induction in Patients with Obesity

#1: Pre-existing or Pregnancy Related Morbidity
- Pre-existing DM
- GDM
- Chronic BP
- PET/PH
- Macrosomia

Inc: IUGFR, SGA, VTE

#2: Increased Rate of Post Dates Pregnancy

As BMI increased, the odds of spontaneous labor progressively decreased.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Ref</th>
<th>25</th>
<th>25-29.9</th>
<th>30-34.9</th>
<th>35-39.9</th>
<th>≥ 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>0.66 (0.54-0.81)</td>
<td>0.53 (0.42-0.66)</td>
<td>0.52 (0.40-0.68)</td>
<td>0.42 (0.31-0.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.81 (0.68-0.96)</td>
<td>0.54 (0.53-0.76)</td>
<td>0.50 (0.40-0.62)</td>
<td>0.40 (0.31-0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.85 (0.71-1.00)</td>
<td>0.64 (0.55-0.76)</td>
<td>0.53 (0.43-0.63)</td>
<td>0.41 (0.33-0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.85 (0.67-1.06)</td>
<td>0.62 (0.50-0.81)</td>
<td>0.51 (0.39-0.66)</td>
<td>0.50 (0.38-0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0.99 (0.58-1.67)</td>
<td>0.70 (0.41-1.19)</td>
<td>0.70 (0.40-1.22)</td>
<td>0.56 (0.31-1.07)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#3: Increased Rate of IUFD through gestation & @term

- Risk of IUFD greatest after 39w GA
- Determining optimal timing of induction
 - Greatest chance for Vaginal Birth
 - Lowest risk of Unplanned C/S
 - Lowest risk of Adverse Perinatal Outcome
Optimal Timing of Induction in Patients with BMI >30

39w
- Cesarean delivery: 0.87 (0.77–0.98)
- Operative vaginal delivery: 1.16 (1.04–1.31)
- Severe maternal morbidity*: 0.76 (0.48–0.87)
- Infant death: 0.23 (0.03–1.68)
- NICU admission: 0.70 (0.70–0.89)
- Macrosomia: 0.26 (0.19–0.34)
- Chorioamnionitis: 0.56 (0.47–0.66)
- Meconium aspiration syndrome: 0.35 (0.29–0.42)
- Respiratory distress syndrome: 0.39 (0.10–1.23)
- Shoulder dystocia: 1.4 (0.87–1.48)
- Breech plexus injury: 0.41 (0.15–1.22)

40w
- Cesarean delivery: 0.85 (0.80–0.90)
- Operative vaginal delivery: 1.07 (1.05–1.10)
- Severe maternal morbidity*: 0.84 (0.75–0.94)
- Infant death: 0.75 (0.20–1.95)
- NICU admission: 0.84 (0.76–0.94)
- Macrosomia: 0.50 (0.39–0.63)
- Chorioamnionitis: 0.61 (0.55–0.69)
- Meconium aspiration syndrome: 0.35 (0.29–0.42)
- Respiratory distress syndrome: 0.82 (0.77–0.87)
- Shoulder dystocia: 1.3 (0.69–1.56)
- Breech plexus injury: 0.90 (0.48–1.70)

41w
- Cesarean delivery: 0.87 (0.75–1.00)
- Operative vaginal delivery: 1.14 (0.95–1.35)
- Severe maternal morbidity*: 0.69 (0.60–0.73)
- Infant death: 0.69 (0.49–0.99)
- NICU admission: 0.69 (0.49–0.99)
- Macrosomia: 0.69 (0.51–0.98)

*Greatest chance of vaginal birth
Lowest risk of adverse maternal & neonatal outcome

Gibbs Pickens CM et al; OBGYN 2018

ACOG May 2023

<table>
<thead>
<tr>
<th>Cesarean delivery</th>
<th>Rate of C/S:</th>
<th>19.7%</th>
<th>v</th>
<th>24.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>nulliparous & parous patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI <35 and ≥35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lowest Rate of:
- Chorioamnionitis
- Perinatal death
- Macrosomia
- 3rd & 4th degree laceration
- Apgar <7 @5min
- Endometritis & Wound Infection
- Meconium aspiration

IOL at @39-39.5w GA associated with greatest rate of vaginal birth and lowest risk of adverse perinatal outcome
Can the event of failed labor be predicted?

Is BMI alone the best predictor of successful OL?

Maternal Factors in addition to BMI associated with failed induction of labor:

<table>
<thead>
<tr>
<th>Predictive Factor</th>
<th>Failed IOL (n=273,184)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior vaginal birth</td>
<td>63.725 (23.3)</td>
<td>0.71 (0.71-0.81)</td>
</tr>
<tr>
<td>Prior cesarean birth</td>
<td>10.550 (5.6)</td>
<td>0.98 (0.87-1.09)</td>
</tr>
<tr>
<td>Maternal height (inches)</td>
<td>64.2±2.9</td>
<td>0.88 (0.87-0.99)</td>
</tr>
<tr>
<td>Maternal age (y)</td>
<td>27.8±6.0</td>
<td>1.05 (1.05-1.06)</td>
</tr>
<tr>
<td>Maternal weight at delivery (lb)</td>
<td>244±41</td>
<td>1.00 (1.00-1.008)</td>
</tr>
<tr>
<td>Parity</td>
<td>1 (0-2)</td>
<td>0.90 (0.89-0.91)</td>
</tr>
<tr>
<td>Gestational weight gain (lb)</td>
<td>28.6±17.8</td>
<td>1.00 (1.00-1.005)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>125.770 (47.8)</td>
<td>1.17 (1.17-1.18)</td>
</tr>
<tr>
<td>Pregnancy diabetes</td>
<td>7.366 (2.7)</td>
<td>1.64 (1.59-1.70)</td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>17.443 (6.4)</td>
<td>1.15 (1.12-1.17)</td>
</tr>
</tbody>
</table>

IOL, induction of labor; OR, odds ratio.
Data are n (%), mean±SD, or median (interquartile range) unless otherwise specified.
Case Example

35yo G2P1 with BMI 43, previous SVD

35yo G1P0 with BMI 43, no previous SVD

https://ob.tools/obesity-iol-calc
The Edmonton Obesity Scoring System Predicts Mode of Delivery after IOL

For patients with BMI >25, an EOSS score was assigned

Prospective Cohort Study (n=345)

? Should ALL patients with obesity be induced at 39w gestation

Maternal Intraoperative Complications: not increased with BMI

Maternal Post-operative complications: increase with BMI
For patients with BMI >40 (class III, super obese)

- (A) Anticipated vaginal birth versus planned cesarean
- (C) Successful vaginal birth versus intrapartum cesarean in those attempting a vaginal birth

- ↑ Post partum hemorrhage
- ↓ Wound complications

No differences: wound infection, VTE, Apgar <6@5 min, cord pH<7.1, NICU admit

There is an equipoise of understanding which is “optimal mode of delivery” with BMI >40: IOL versus Planned C/S

Need an RCT to determine optimal mode of delivery

? What is the expected duration of the latent phase: how to measure progress

As BMI increases, duration of latent phase increases

<table>
<thead>
<tr>
<th>Maternal body mass index (kg/m²)</th>
<th>Quartiles</th>
<th>Time from admission to start of active phase in hours (N = 15 073)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>25%</td>
</tr>
<tr>
<td><18.5</td>
<td>322</td>
<td>7.7</td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>8434</td>
<td>8.4</td>
</tr>
<tr>
<td>25-29.9</td>
<td>3993</td>
<td>9.2</td>
</tr>
<tr>
<td>30-34.9</td>
<td>1568</td>
<td>9.6</td>
</tr>
<tr>
<td>35-39.9</td>
<td>549</td>
<td>10.2</td>
</tr>
<tr>
<td>>40</td>
<td>207</td>
<td>11.1</td>
</tr>
</tbody>
</table>

24-36h day for cervix to ripen
? What is the expected duration of the active phase

Active labor: same rate of vaginal birth**
longer duration

<table>
<thead>
<tr>
<th>Cx > 4cm</th>
<th>Duration of the active phase of labor in hours (N = 15259)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quartiles</td>
</tr>
<tr>
<td>Maternal body mass index (kg/m²)</td>
<td>N</td>
</tr>
<tr>
<td><18.5</td>
<td>325</td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>1059</td>
</tr>
<tr>
<td>25-29.9</td>
<td>4044</td>
</tr>
<tr>
<td>30-34.9</td>
<td>1605</td>
</tr>
<tr>
<td>35-39.9</td>
<td>562</td>
</tr>
<tr>
<td>≥40</td>
<td>214</td>
</tr>
</tbody>
</table>

Carlhallet al 2019 AOGS

DRAFT: BMI Specific Partogram

PARTOGRAPH

Alert
Action

2cm / hour with optimal uterine activity
? What is the expected duration of the second stage

<table>
<thead>
<tr>
<th>BMI (kg/m²)</th>
<th>N (57,500)</th>
<th>Duration of the second stage in hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quartiles</td>
</tr>
<tr>
<td><18.5</td>
<td>1890</td>
<td>0.35</td>
</tr>
<tr>
<td>18.5–24.9</td>
<td>39,241</td>
<td>0.35</td>
</tr>
<tr>
<td>25–29.9</td>
<td>12,192</td>
<td>0.32</td>
</tr>
<tr>
<td>30–34.9</td>
<td>3093</td>
<td>0.30</td>
</tr>
<tr>
<td>35–39.9</td>
<td>845</td>
<td>0.32</td>
</tr>
<tr>
<td>>40</td>
<td>239</td>
<td>0.27</td>
</tr>
</tbody>
</table>

BMI = body mass index.

Note: Conflicting studies but most favor no difference in length of 2nd stage
BUT
Increase rate of C/S (most commonly 2a Abnormal FHR)
Decreased rate of Operative Vaginal Birth

? Why do patients with obesity have labor dystocia

Adipose tissue
- Increased leptin production

Placenta
- Increased leptin production
- Altered placental preparation for labor
- Estrogen/progesterone signalling changes
- Prostaglandin PGE2 insensitivity

Myometrium
- Decreased gap junction formation
- Decreased oxytocin receptor expression
- Decreased myometrial action potential size and duration
- Lipotoxicity > increased reactive oxygen species

Cervix
- Disrupted cervical ripening

Amnion
- Decreased normal spontaneous rupture of membranes

** Effect of leptin
- Blocks action of oxytocin
- Blocks collagen degradation
- Chronic inflammation & PGE2 production (down regulates responsiveness)

Carlson N et al, Repro Bio Endo, 2015
1. Impaired tissue response
- lower OTR
- OTR blocked by leptin
- impaired myometrial contractility

2. Dilutional effect
- increased maternal blood volume
Pragmatic Approach to Induction & Labour Management

Delivery Plan & Counselling

1. Plan for IOL at 39-396w GA
 * earlier if indicated by pregnancy or pre-pregnancy co-morbidity
2. Recalculate BMI at 36w GA
3. @38w GA: perform pelvic assessment for Bishop score
 ** not part of BMI Predictor Tools BUT.....
4. Calculate chance of success to guide IOL choice
 - BMI > 40 or >50 + unripe Cx
 - BMI > 60
 - E OSS 3
 Consider elective C/S
5. Discuss and document expectations & risks
 - mean time for Cx ripening
 - mean time to delivery
 - chance of C/S
 - C/S counselling (incision, risks, dressing, ppABx, mVTE)

** Informed, values based patient choice for mode of delivery

% Successful IOL by BMI and Bishop Score
** What is most effective mode of cervical ripening

** very few studies, very small samples sizes

<table>
<thead>
<tr>
<th>Method Combination</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foley™ + Vaginal PGE1 vs Vaginal PGE1 alone</td>
<td>No difference in C/S rates *</td>
<td>* High baseline rate</td>
</tr>
<tr>
<td>Foley™ vs Vaginal PGE1 vs Vaginal PGE2</td>
<td>No difference in C/S rates *</td>
<td></td>
</tr>
<tr>
<td>Vaginal PGE1 vs Oral PGE1</td>
<td>Faster time to Bishop score >3 and to delivery</td>
<td></td>
</tr>
<tr>
<td>Foley™ followed by Oral PGE1 vs Oral PGE1</td>
<td>Lower rate of C/S</td>
<td></td>
</tr>
<tr>
<td>Foley™ vs Vaginal PGE2</td>
<td>Shorter time to delivery & increased satisfaction</td>
<td></td>
</tr>
</tbody>
</table>

No consensus on optimal of mode of cervical ripening

Kehl et al, Eur J OB GYN Repro Bio 2019
Viteri et al, Am J Perinatol, 2020
Soni et, J Mat Fet Neonat Med, 2020
Lauterbach et al,…

Cervical Ripening & Labor Induction

<table>
<thead>
<tr>
<th>Study</th>
<th>ORAL PGE1 25μg q4h</th>
<th>NR</th>
<th>ORAL PGE1 25μg q4h + Foley™ catheter</th>
<th>NR</th>
<th>Higher rates of vaginal birth within 24h</th>
<th>Lower rates of C/S</th>
<th>* No difference in the rates of adverse maternal & neonatal events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successfull outcome (delivery within 24 hr)</td>
<td>76 (87.4%)</td>
<td>57 (75.0%)</td>
<td>.02</td>
<td>Higher rates of vaginal birth within 24h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal delivery after 24 hr of induction</td>
<td>11 (12.6 %)</td>
<td>19 (25.0%)</td>
<td>.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total vaginal delivery</td>
<td>87</td>
<td>76</td>
<td>.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSD</td>
<td>13</td>
<td>24</td>
<td>.04</td>
<td>Lower rates of C/S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal distress</td>
<td>3 (23%)</td>
<td>9 (37.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed progress of labor</td>
<td>10 (77%)</td>
<td>15 (82.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumental delivery</td>
<td>3</td>
<td>2</td>
<td>.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combination of FoleyTM and ORAL misoprostol is safe & effective for all comers

Note: Myometrium less sensitive of PGE2 due to chronic exposure
PGE1 has more potent binding receptor & myometrial effect than PGE2

Anjali et al, AJOG, 2022
SOGC Guideline 2022
Longer duration & greater dose of PGE1 with increasing BMI

BUT

76% of inductions ended with a successful vaginal birth

** Registered RCT in USA: Misoprostol Dosing in BMI Greater Than 30
RCT 25mcg versus 50 mcg for labor induction

** Hypothesis: PGE1 + Foley™ may be an optimized first line mode of labor induction in patients with obesity
Timing of AROM

<table>
<thead>
<tr>
<th>For BMI >40</th>
<th>< 4cm</th>
<th>> 4cm</th>
<th>Early Amniontomy associated with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td>Early amniontomy, n = 187</td>
<td>Late amniontomy, n = 178</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>34 (18.5%)</td>
<td>34 (18.9%)</td>
<td>2.34 (1.43–3.84)</td>
</tr>
<tr>
<td>Prolonged labor</td>
<td>18 (9.6%)</td>
<td>12 (6.6%)</td>
<td>2.74 (1.27–5.96)</td>
</tr>
<tr>
<td>Maternal composite</td>
<td>29 (15.6%)</td>
<td>41 (23.1%)</td>
<td>1.24 (0.72–2.18)</td>
</tr>
<tr>
<td>PPH</td>
<td>11 (6.5%)</td>
<td>15 (8.4%)</td>
<td>1.25 (0.65–2.38)</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>2 (1.2%)</td>
<td>2 (1.2%)</td>
<td>1.08 (0.22–5.98)</td>
</tr>
<tr>
<td>Chorioamnionitis</td>
<td>15 (5.0%)</td>
<td>7 (0.0%)</td>
<td>1.5 (0.59–4.81)</td>
</tr>
<tr>
<td>Endometritis</td>
<td>2 (1.9%)</td>
<td>1 (0.6%)</td>
<td>1.68 (1.23–12.18)</td>
</tr>
<tr>
<td>Wound infection</td>
<td>2 (1.9%)</td>
<td>1 (0.6%)</td>
<td>1.68 (1.23–12.18)</td>
</tr>
<tr>
<td>YFE</td>
<td>0 (0%)</td>
<td>1 (0.6%)</td>
<td>1.08 (0.22–5.98)</td>
</tr>
<tr>
<td>Maternal death</td>
<td>0 (0%)</td>
<td>1 (0.6%)</td>
<td>1.08 (0.22–5.98)</td>
</tr>
<tr>
<td>Neonatal death</td>
<td>10 (5.7%)</td>
<td>22 (12.4%)</td>
<td>1.33 (0.79–2.28)</td>
</tr>
<tr>
<td>NICU admission > 24 hours</td>
<td>10 (5.7%)</td>
<td>16 (9.8%)</td>
<td>1.52 (0.71–3.26)</td>
</tr>
<tr>
<td>Ventilation > 24 hours</td>
<td>2 (1.9%)</td>
<td>6 (3.4%)</td>
<td>0.55 (0.11–2.76)</td>
</tr>
<tr>
<td>Suspected asphyxia</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
<td>2.24 (0.41–6.21)</td>
</tr>
<tr>
<td>Grade 3 or 4 DUN</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>HIE</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>RDS</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>Seizures</td>
<td>0 (0%)</td>
<td>1 (0.6%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>CPR</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>NEC</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
<tr>
<td>Fetal death</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00 (0.00–1.00)</td>
</tr>
</tbody>
</table>

Pasko et al, SMFM 2018

Anecdotal Experience with Foley + PGE1: Wait for effacement and some UC before AROM with PGE1 IOL

Use of Oxytocin for Augmentation and/or Induction

<table>
<thead>
<tr>
<th>Labor induction</th>
<th>Normal weight, N = 215 (8.6%)</th>
<th>Overweight, N = 767 (30.6%)</th>
<th>Class I obesity, N = 717 (28.6%)</th>
<th>Class II obesity, N = 433 (17.3%)</th>
<th>Class III obesity, N = 374 (14.9%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max oxytocin > 20 mlU/min</td>
<td>8 (3.7)</td>
<td>26 (3.4)</td>
<td>18 (2.5)</td>
<td>11 (4.8)</td>
<td>25 (6.7)</td>
<td>0.005</td>
</tr>
<tr>
<td>Highest rate of oxytocin (muU/min)</td>
<td>8.0 (1.0–3.0.0)</td>
<td>10.0 (1.0–3.40)</td>
<td>10.0 (1.0–3.0.0)</td>
<td>12.0 (1.0–3.0.0)</td>
<td>12.0 (1.0–3.0.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Average oxytocin dosage (muL)</td>
<td>2.9583 (112.5–4.47.90)</td>
<td>3.9050 (36.0–5.003.0)</td>
<td>3.696 (21.0–5.481.5)</td>
<td>4.360 (166.0–48.523.6)</td>
<td>5.2430 (128.0–31.213.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Duration of oxytocin (h)</td>
<td>9.1 (0.73–45.6)</td>
<td>11.3 (0.52–62.2)</td>
<td>11.1 (0.23–58.1)</td>
<td>11.2 (1.38–59.4)</td>
<td>12.5 (1.77–47.1)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Same pattern observed for labor augmentation

Rate, Dose & Duration of Oxytocin Increased with Maternal BMI

Need more to get same effect !

Adams et al, Am J Perinat 2018
How to use higher doses of oxytocin safely

In-Use Oxytocin Safety Checklist

This checklist should be successfully completed every 30 minutes (+/- 10 min) while oxytocin is in use.

If this checklist cannot be completed, oxytocin must be decreased or stopped.

- **Continuous Electronic Fetal Monitoring (CEFM) Assessment**:
 - Normal EFM tracing for each of the 2 15-minute (not 5-minute) segments of the CEFM is the test range within normal range, intermediate variability, no or non-frequent uncompleted decelerations.
 - No more than 1, 15-minute segment where the EFM is flat.
 - No more than 2 complete longer uncompleted decelerations within the previous 30 minutes.

- **Uterine Contractions**:
 - No more than 5 contractions in a 15-minute window, averaged over 24 hours.
 - No contractions with a duration greater than 30 seconds.
 - Uterine contractions that exceed contractions for a minimum of 90 seconds.
 - If an intravenous pressure catheter (IUPC) is in place, measured uterine resting time is less than 10 minutes for at least 30 minutes between each contraction.

Use of internal monitoring increases with BMI

Infection morbidity increases with any internal monitor = elevated BMI does not increase that risk

Decision for IOL:
accept risk of emergency C/S

Place Foley catheter:
consider as outpatient procedure x 12-18h
decrease time of admission, immobility

Start Miso 50 mcg q2h
Expectation: 24 – 36 hours for cx ripening phase (range 1-91h)

Foley removed
Expectation: Cx 3-4cm, no effaced

Continue Miso 50 mcg q2h

AROM @ > 4cm, ideally with uterine contractions
Expectation: average 12h (range 3-35h) to reach full dilatation

@24h of Miso:
no change in Cx dilation despite UC
no UC

Switch to Oxytocin augmentation protocol
Expectation: higher dose & duration and Maximum rate

Apply FSE, IUPC
Expectation: time to reach UC labor pattern
with adequate UC, Cx to dilate 1 cm q 2h
if FHR normal – expect 12+h of exposure to oxytocin *
? How to diagnose failed labor induction
? How to diagnose fail to progress in labor

- Lack of adequate cervical and uterine response to Miso and/or oxytocin
- Failure to progress despite uterine activity (Montevido units >200/10 min)

Power – responsiveness of myometrium

Passenger - increased rate of LGA, malposition, less comfort with operative vaginal birth
? Lower threshold for FHR changes

Passage: fat deposition obstructing descent

Psyche: immobility, frustration, nutrition, less supportive care (subconscious bias)

Practitioner: “weight stigma” influence

Consideration for Regional Anesthesia

1. Anesthesia consult: International guidelines recommend for BMI >40
 @ 28w GA
 Work through fear, concerns,
 Access imaging
 Work up morbidities that may affect anesthesia considerations (esp OSA)

2. Recommend “Early” epidural placement: before active phase
 - risk of unplanned emergency C/S is elevated
 - risks associated with GA, challenge with intubation
 - difficult to position when experiencing pain
 - difficult to place in an emergent/urgent situation

 Risk: catheter slips with sweat, re-positioning
Consideration for TOLAC

| Previous C/S | 10 fold increased risk of failed IOL |
| BMI > 40 | Repeat C/S associated with lower rate of: uterine dehiscence / rupture endometritis composite maternal morbidity Apgar @5min <7 birth trauma (#, brachial plexus, lac) |

Recommend repeat ERCS

Consideration for VTE Prophylaxis and Antibiotics

Take Home Messages

- IOL at 39-39w6d lowest risk of morbidity greatest chance of vaginal birth
- BMI, Co-morbidities, Bishop Score, OBHx predict chance of successful vaginal birth
- Informed counselling: chance of success, risk of morbidity, expectations of C/S
- Expect longer duration of first stage of labor: latent phase 24-36h active phase 1cm per 2h
- Foley + PGE1 may be optimal mode of IOL
- Expect higher dose, duration & max rate of oxytocin, FSE & IUPC allows safe use
- Recommend early epidural
Labor Management for Patients with Obesity

Wendy L. Whittle MD PhD FRCSC
Head: Division of Maternal Fetal Medicine
Co-Head: Division of Midwifery
Medical Director: Antenatal Inpatient Care, Ambulatory Obstetrics
Sinai Health System; Toronto CA