Patient Care Algorithms

for the <u>Identification</u>, <u>Admission</u> and <u>Investigation</u> of Pregnant Persons with <u>Suspected</u> or <u>Confirmed</u> SARS-CoV2 Infection

Rohan D'Souza

MD, PhD, FRCOG, FCPS, MSc, MBBS, DNB, DGO, DFP

Maternal-Fetal Medicine Physician, Mount Sinai Hospital, Toronto

Clinician-Scientist, Lunenfeld-Tanenbaum Research Institute, Toronto

Assistant Professor, Obstetrics and Gynaecology, University of Toronto

Aims and objectives

- To become proficient at assessing, triaging and managing pregnant persons with suspected or confirmed SARS-CoV2 infection, based on standardized patient-care algorithms
- Disclaimer
 - These are 'living documents'
 - Not meant to be prescriptive, and require the use of clinical judgement
 - Note 'words of caution' at the end of the presentation

Rationale

Noelle BRESLIN, M.D., Caitlin BAPTISTE, M.D., Russell MILLER, M.D., Karin FUCHS, M.D., Dena GOFFMAN, M.D., Cynthia GYAMFI-BANNERMAN, M.D, M.S., Mary D'ALTON, M.D.

	Case	Age	вмі	GA	РМН	Chief Complaint	Fever	Cough			systems on Chest pain			Sick contacts	Temp	wвс	Platelets	Dispo
COV/ID in program OV/ID													<u> </u>	l	l I			<u> </u>
<u>COVID in pregnancy</u> - 86%: mild	1	38	38	37+0	T2DM	Labor induction	N	N	N	N	N	N	N	N	36.9 - 38.1 C	7.4	216	ICU
- 9.3%: severe	2	33	47	37+5	T2DM, cHTN	Labor induction	N	N	N	N	N	N	N	N	36.5- 38.8 C	7.3	276	ICU
- 4.7%: critical Breslin case series (43)	3	30	30	35+5	None	Tachycardia (pulse 130 bpm)	N	N	N	N	Y	Y	N	Y	36.7 - 38.3 C	4.5	185	Admit^
	4	32	29	32+5	None	Fever, myalgias, cough	Y	Y	Y	N	N	N	N	Y	36.6 - 37.6 C	6.5	180	Admit^
	5	27	31	26+3	None	Chest pain	N	N	N	N	Y	N	N	N	36.7 - 37.1 C	6.8	129	Home
Can we identify the 14% that are likely to progress to	6	38	34	28+0	Asthma	Fever, myalgias, cough	Y	Y	Y	N	N	N	N	N	36.9 - 37.0 C	-	-	Home
severe/critical disease, and safely discharge the other	7	39	23	34+6	None	Cough, HA, myalgias	N	Y	Y	N	N	Y	N	N	36.4 - 37.2 C	5.4	255	Home
salely discharge the other																		

*GA = gestational age (weeks + days); PMH = past medical history; T2DM = type two diabetes mellitus; cHTN = chronic hypertension;

HA = headache; WBC = white blood cell count; Dispo = initial disposition; ICU = intensive care unit

^ Cases 3 and 4 were each admitted for supportive care, and each was discharged home on hospital day three

86%?

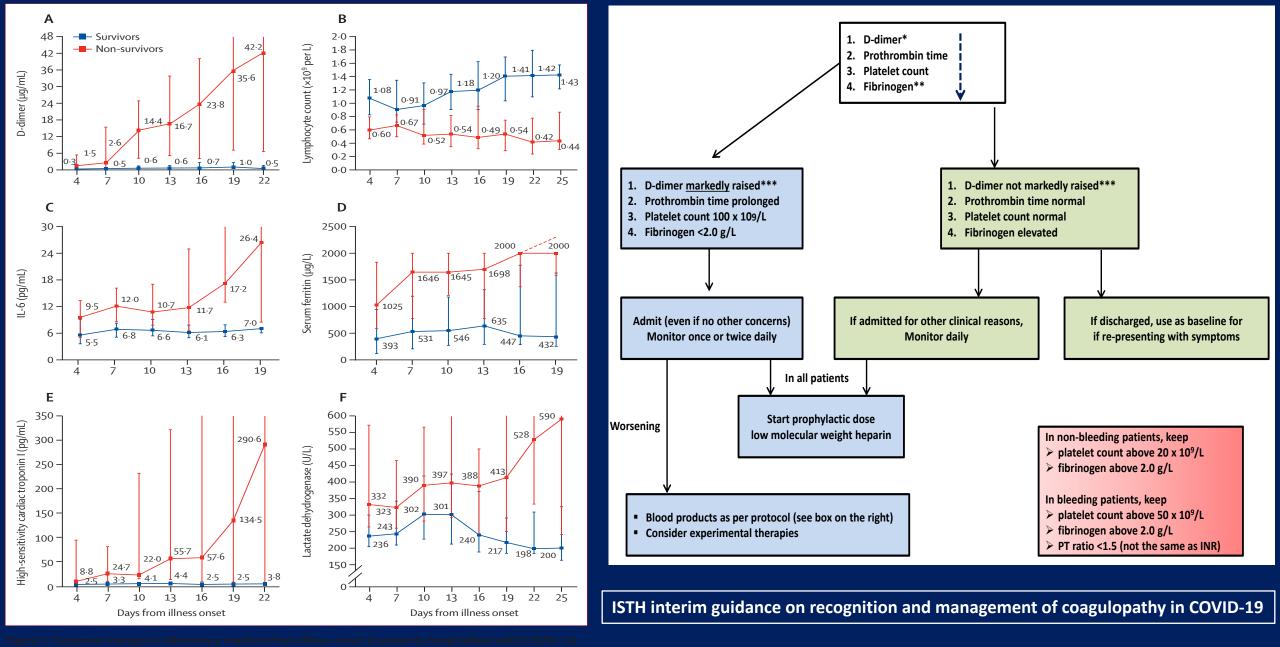


Figure shows temporal changes in d-dimer (A), lymphocytes (B), IL-6 (C), serum ferritin (D), high-sensitivity cardie troponin I (E), and lactate dehydrogenase (F). Differences between survivors and non-survivors were signed by the distant shown, except for day 4 after illness onset for d-dimer, IL-6, and high-sensitivity cardie to the transformer of the

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

Fei Zhou*, Ting Yu*, Ronghui Du*, Guohui Fan*, Ying Liu*, Zhibo Liu*, Jie Xiang*, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang, Hua Chen, Bin Cao

Outpatient/ Ambulatory Settings

• Aim: To determine which pregnant persons with suspected or confirmed SARS-CoV2 infection require inpatient management

• Version:5

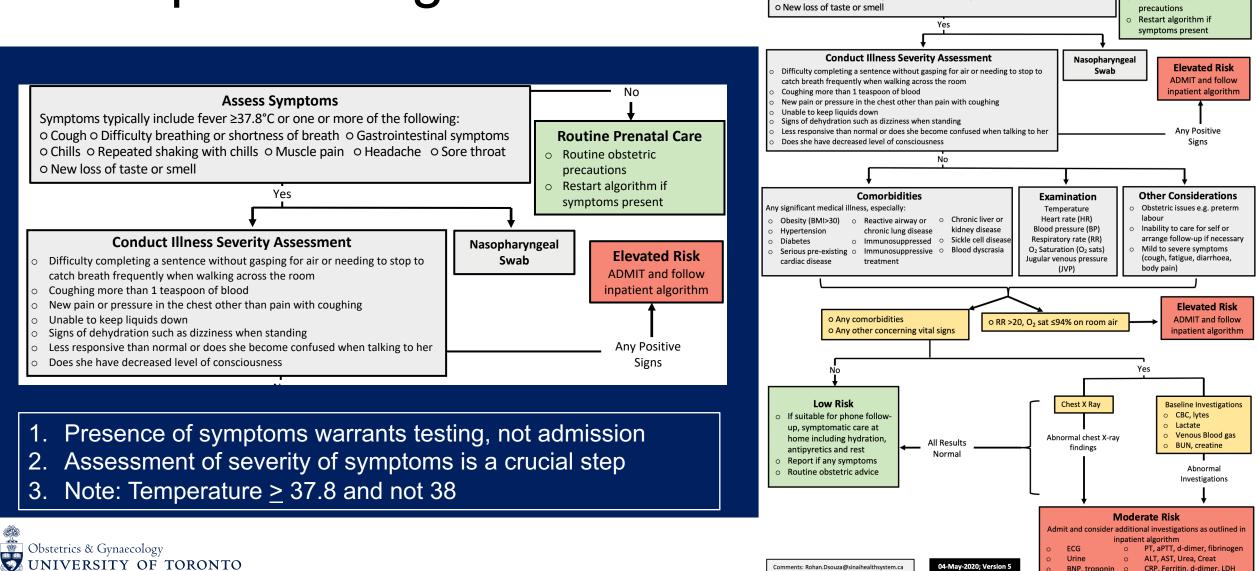
- Sources
 - ACOG/SMFM Algorithm (22 Apr 2020)
 - Mount Sinai slide-deck [Dr. Wendy Whittle]
 - Other published evidence
 - Comments of clinicians that reviewed versions 1-3

Suspected or Confirmed COVID-19 Infection in Pregnancy Algorithm for OUTPATIENT settings

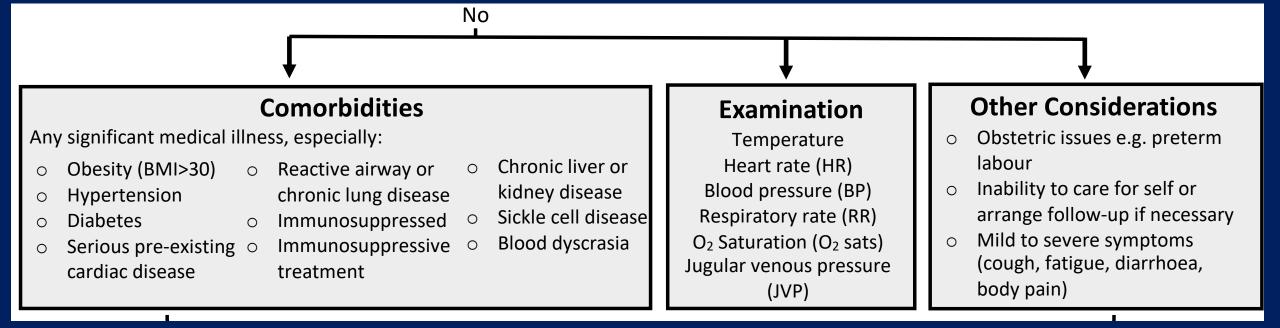
No

Routine Prenatal Care

Routine obstetric

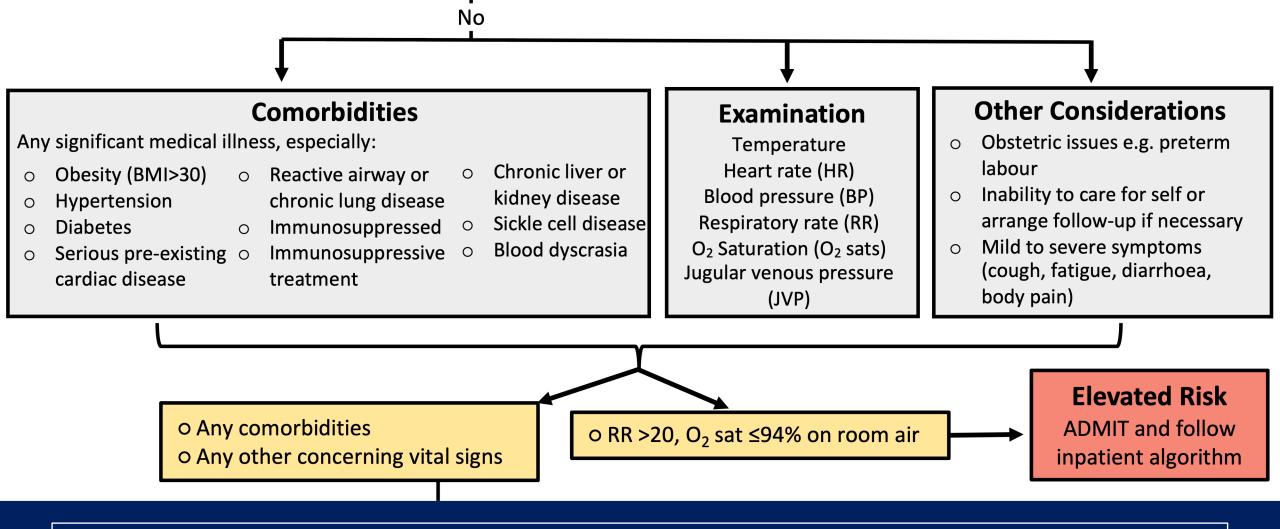

BNP, troponin

0

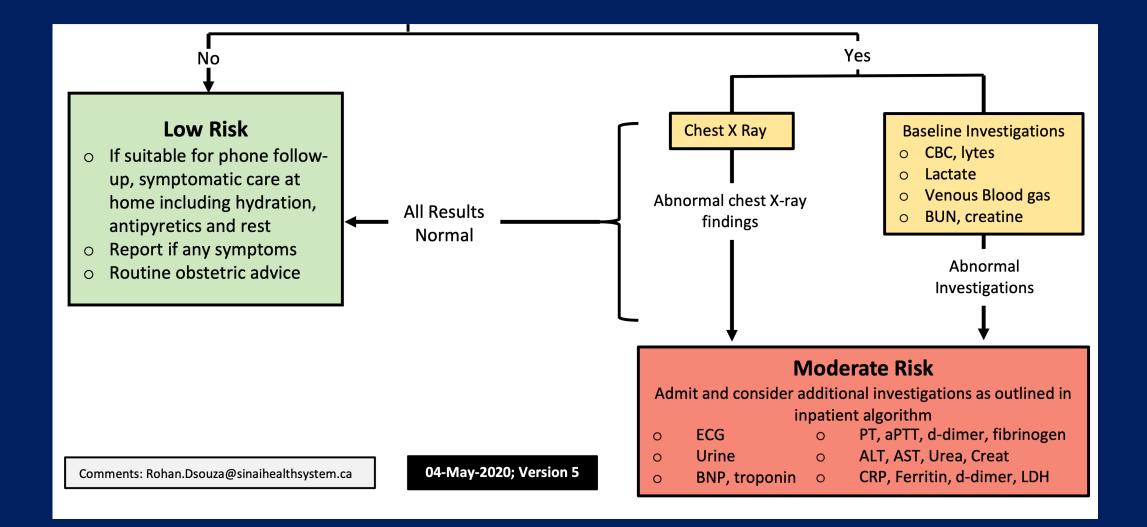

Aim: To determine which pregnant patients with suspected or confirmed COVID infection require inpatient management. This algorithm is based on the SMFM algorithm, and is not intended to replace normal obstetrical triage.

Assess Symptoms Symptoms typically include fever \geq 37.8°C or one or more of the following: o Cough o Difficulty breathing or shortness of breath o Gastrointestinal symptoms

o Chills o Repeated shaking with chills o Muscle pain o Headache o Sore throat



Outpatient Algorithm



- 1. List of comorbidities is not exhaustive use clinical judgement
- 2. The examination must include RR and oxygen saturations on room air
- 3. JVP should be assessed to determine judicious fluid management
- 4. Do not forget about
 - The ability of the patient to care for self and arrange follow up
 - Routine obstetrics and non-obstetric/ non-COVID conditions

- 1. Respiratory concerns to be taken seriously, even in the absence of comorbidities or normal other findings
- 2. Comorbidities in pregnancy to be taken seriously
- 3. "Other concerning vital signs" deliberate attempt at not being prescriptive

- 1. Chest X-ray findings warrant special attention
- 2. 'Baseline' investigations deemed sufficient in the first instance

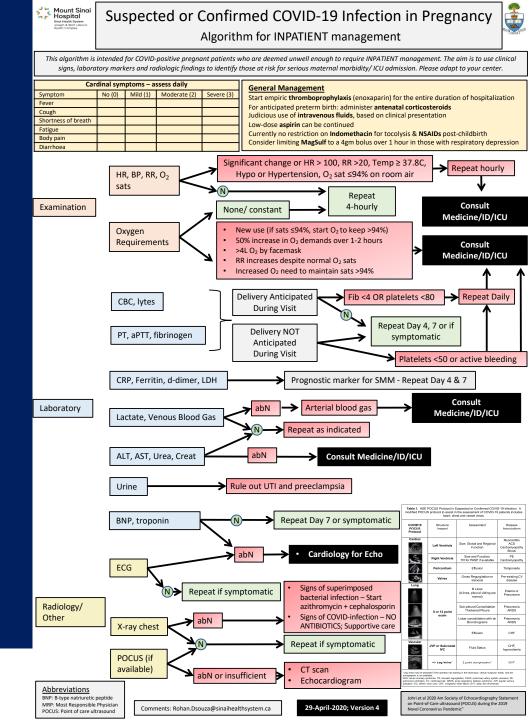
Obstetrics & Gynaecology UNIVERSITY OF TORONTO

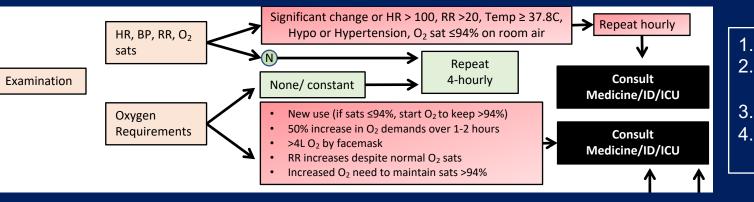
Inpatient Setting

- Aim: To determine which pregnant persons with suspected or confirmed SARS-CoV2 infection are likely to have severe or critical illness, and institute early supportive treatment
- Version:4
- Sources
 - Evidence from non-pregnant populations
 - Correspondence with colleagues around the world (Dr. Whittle)
 - Multidisciplinary team involvement at Mt. Sinai (MFM, obstetrics, obstetric medicine, haematology, cardiology, obstetric anaesthesia, respirology, ICU, family practice)
 - Comments of those that reviewed versions 1-3
- Disclaimer
 - SMFM "Considerations" document (29/Apr) are currently being evaluated

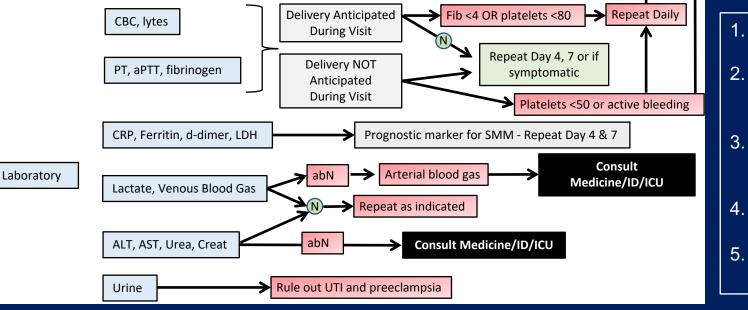
Cardinal symptoms – assess daily									
Symptom	No (0)	Mild (1)	Moderate (2)	Severe (3)					
Fever									
Cough									
Shortness of breath									
Fatigue									
Body pain									
Diarrhoea									

 Must be assessed daily – good clinical practice
Worsening symptoms should trigger appropriate clinical response


General Management


Obstetrics & Gynaecology

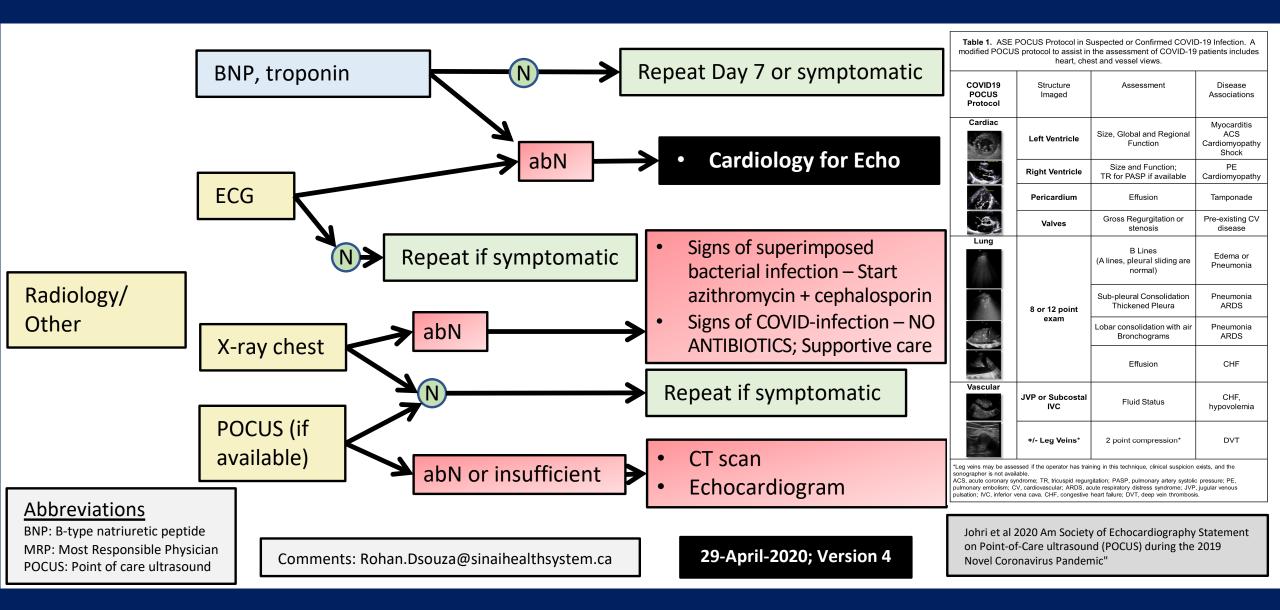
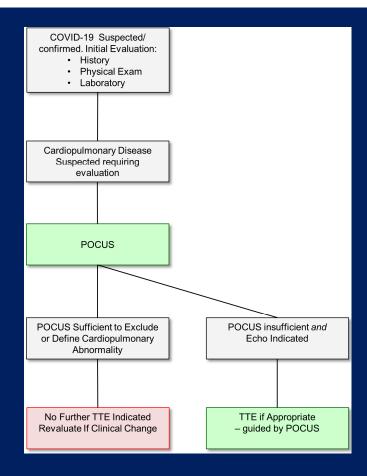
UNIVERSITY OF TORONTO

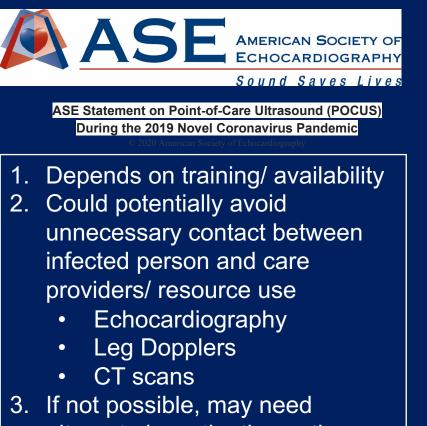

Start empiric **thromboprophylaxis** (enoxaparin) for the entire duration of hospitalization For anticipated preterm birth: administer **antenatal corticosteroids** Judicious use of **intravenous fluids**, based on clinical presentation Low-dose **aspirin** can be continued

Currently no restriction on **Indomethacin** for tocolysis & **NSAIDs** post-childbirth Consider limiting **MagSulf** to a 4gm bolus over 1 hour in those with respiratory depression

- Temp \geq 37.8 and O₂ sats \leq 94% always concerning
- Use clinical judgement and overall picture; not absolute values in determining "significant change"
- . Change in oxygen requirements must be taken seriously
- Pathway (ICU vs ID vs Medicine) to be determined by individual sites

- 1. Haematologic changes could be profound, and are among the earliest prognostic markers of severe disease
- CRP and d-dimers although not traditionally used in obstetrics, are among the most important early markers of disease severity
- Interpretation of abnormal values should be done in conjunction with specialists, and may depend on whether birth is imminent or not
- 4. Abnormal blood gases, regardless of symptom severity, should prompt referral/escalation
- 5. Severe COVID can mimic other obstetric and medical emergencies


Table 1. ASE POCUS Protocol in Suspected or Confirmed COVID-19 Infection. A modified POCUS protocol to assist in the assessment of COVID-19 patients includes heart, chest and vessel views.

(Hocus) POCUS

Obstetrics & Gynaecology

UNIVERSITY OF TORONTO

alternate investigative pathways

neart, chest and vessel views.						
COVID19 POCUS Protocol	Structure Imaged	Assessment	Disease Associations			
Cardiac	Left Ventricle	Size, Global and Regional Function	Myocarditis ACS Cardiomyopathy Shock			
	Right Ventricle	Size and Function; TR for PASP if available	PE Cardiomyopathy			
13A	Pericardium	Effusion	Tamponade			
) De	Valves	Gross Regurgitation or stenosis	Pre-existing CV disease			
Lung		B Lines (A lines, pleural sliding are normal)	Edema or Pneumonia			
	8 or 12 point	Sub-pleural Consolidation Thickened Pleura	Pneumonia ARDS			
	exam	Lobar consolidation with air Bronchograms	Pneumonia ARDS			
		Effusion	CHF			
Vascular	JVP or Subcostal IVC	Fluid Status	CHF, hypovolemia			
	+/- Leg Veins*	2 point compression*	DVT			

*Leg veins may be assessed if the operator has training in this technique, clinical suspicion exists, and the sonographer is not available.

ACS, acute coronary syndrome; TR, tricuspid regurgitation; PASP, pulmonary artery systolic pressure; PE, pulmonary embolism; CV, cardiovascular; ARDS, acute respiratory distress syndrome; JVP, jugular venous pulsation; IVC, inferior vena cava. CHF, congestive heart failure; DVT, deep vein thrombosis.

Words of caution!

- Use the most up-to-date algorithm
 - Posted on the OBGYN UofT / SOON COVID-resource page
 - SMFM recommendations on H-Score etc. (29 April) being considered by multi-disciplinary team
- Feedabck
- Careful about site-specific modifications
 - This is a novel disease and care pathways must reflect that

OK

- 1. Consider alternate referral pathways
- 2. Modify investigative pathways in consultation with a local multidisciplinary team
- 3. Consult referral centres in case of any doubts/ questions

NOT OK

- 1. Changing thresholds
- 2. Setting absolute values
- 3. Ignoring a sudden change in symptoms
- 4. Replacing parts of the algorithm with prediction models not validated in pregnancy or for COVID

Anticipated benefits

- Standardized and <u>safe</u> approach towards
 - Identifying early, the 14% at increased risk for serious/critical disease
 - Reducing hospital admissions and the length of hospital stay
 - Reducing unnecessary investigations and resource utilization
- Protecting healthcare professionals and other patients
- Other benefits
 - Quality Improvement, Patient Safety
 - Research implications
 - Framework for regional/ provincial/ national collaboration

Acknowledgements

- Wendy Whittle
- Ann Kinga Malinowski
- Nimrah Abbasi
- John Snelgrove
- Cynthia Maxwell
- Tim Van Mieghem
- Mathew Sermer
- Kellie E Murphy

- Shital Gandhi (Obstetric Medicine)
- Nadine Shehata (Haematology)
- Candice Silversides (Cardiology)
- Stephen Lapinsky (Respirology/ ICU)
- Cristian Arzola (Ob Anaesthesia)
- Kristina Khanduja (Ob Anaesthesia)
- Sabrina Kolker (Family Practice)
- Lauren Clarfield (Medical Student)